LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

B.Sc. DEGREE EXAMINATION - **MATHEMATICS**

FIFTH SEMESTER - NOVEMBER 2013

MT 5405/5401 - FLUID DYNAMICS

Date: 14/11/2013	Dept. No.	
Time $\cdot 0.00 - 12.00$		

Max.: 100 Marks

Part A

Answer all Questions:

 $(10 \times 2 = 20)$

- 1. Define stream tube.
- 2. When do you say the flow is irrotational.
- 3. Write down the boundary condition for the flow.
- 4. Define a two-dimensional sink and source.
- 5. Show that $q = 2x \overrightarrow{i} y \overrightarrow{j} z \overrightarrow{k}$ is a possible motion.
- 6. What is the complex potential of sink with strength situated at the origin?
- 7. Define vortex tube.
- 8. What is C-R equation?
- 9. Find the vorticity vector for the velocity q = ui + vj
- 10. What is lift of an aerofoil?

Part B

Answer any FIVE questions:

 $(5 \times 8 = 40)$

- 11. Prove that for the complex potential $\tan^{-1} z$ the streamlines and equipotentials are circles.
- 12. Explain the construction of a Venturi tube.
- 13. State and prove the theorem of Kutta-Joukowski.
- 14. Obtain the complex potential due to the image of a source with respect to a plane.
- 15. The velocity \vec{q} in a 2-dimensional flow field for an incompressible fluid is $\vec{q} = -3y^2\vec{i} 6x\vec{j}$. Determine the equation of streamlines passing through the point (1, 1).
- 16. Derive the equation of continuity.
- 17. Let $\vec{q} = (Az By)\vec{i} + (Bx Cz)\vec{j} + (Cy Ax)\vec{k}$, (A, B, C are constants) be the velocity vector of a fluid motion. Find the equation of vortex lines.

18. Define path lines and determine the equation of path lines if $u = \frac{x}{1+t}$, $v = \frac{y}{1+t}$, $w = \frac{z}{1+t}$.

Part C

Answer any TWO questions:

 $(2 \times 20 = 40)$

- 19. (a) What arrangement of sources and sinks will give rise to the function $w = \log(z \frac{a^2}{z})$?
 - (b)Obtain the complex potential due to the image of a source with respect to a circle.

(8+12)

(12+8)

- 20. (a) The velocity components for a two dimensional fluid system can be given in the Eulerian system by u = 2x + 2y + 3t, $v = x + y + \frac{t}{2}$. Find the displacement of a fluid particle in the Lagrangian system.
 - (b)Draw and explain the working of a Pitot tube.
- 21. (a) Discuss the structure of an aerofoil.
 - (b) Derive Joukowski transformation. (8+12)
- 22. Derive the Euler's equation of motion and deduce the Bernoulli's equation of motion.(20)
